Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Turbulence is a universal principle for fast energy and information transfer. Moving beyond the turbulence of fluid dynamics, turbulence has recently been demonstrated in brain dynamics. Importantly, turbulence can be expressed as the rich variability across spacetime of the local levels of synchronisation of coupled brain signals. In fact, the optimal mixing properties of turbulence is what allows for efficient transfer of energy/information over space and time in the brain. This is especially important for the survival given the need to overcome the inherent slowness in neural dynamics. Here, we review the research showing that the turbulence offers a convenient framework for describing brain dynamics and that the scale-free nature of turbulence, reflected in power-laws, provides the necessary mechanisms for time-critical information transfer in the brain. Whole-brain modelling of turbulence as coupled-oscillators has been shown to provide precise signatures of many different brain states. The levels of turbulence change in disease, and careful research of the vortex space could potentially help discover new avenues for a better understanding of this breakdown and offer better control of these highly non-linear, non-equilibrium states. Overall, the framework of the turbulent brain is a highly fertile, fast developing field with great potential.

Original publication

DOI

10.1016/j.neubiorev.2024.105988

Type

Journal article

Journal

Neurosci Biobehav Rev

Publication Date

21/12/2024

Keywords

Turbulence, brain dynamics, coupled oscillators, scale-free