Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Deterioration in the peripheral and central auditory systems is common in older adults and often leads to hearing and speech comprehension difficulties. Even when hearing remains intact, electrophysiological data of older adults frequently exhibit altered neural responses along the auditory pathway, reflected in variability in phase alignment of neural activity to speech sound onsets. However, it remains unclear whether challenges in speech processing in aging stem from more fundamental deficits in auditory and timing processes. Here, we investigated if and how aging individuals encoded temporal regularities in isochronous auditory sequences presented at 1.5Hz, and if they employed adaptive mechanisms of neural phase alignment in anticipation of next sound onsets. We recorded EEG in older and young individuals listening to simple isochronous tone sequences. We show that aging individuals displayed larger event-related neural responses, an increased 1/F slope, but reduced phase-coherence at the stimulation frequency (1.5Hz) and a reduced slope of phase-coherence over time in the delta and theta frequency-bands. These observations suggest altered top-down modulatory inhibition when processing repeated and predictable sounds in a sequence and altered mechanisms of continuous phase-alignment to expected sound onsets in aging. Given that deteriorations in these basic timing capacities may affect other higher-order cognitive processes (e.g., attention, perception, and action), these results underscore the need for future research examining the link between basic timing abilities and general cognition across the lifespan.

Original publication

DOI

10.1111/ejn.70031

Type

Journal article

Journal

Eur J Neurosci

Publication Date

03/2025

Volume

61

Keywords

EEG, aging, audition, oscillations, timing, Humans, Aging, Aged, Female, Male, Adult, Young Adult, Auditory Perception, Electroencephalography, Middle Aged, Speech Perception, Acoustic Stimulation, Evoked Potentials, Auditory, Time Perception