Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Neuroimaging group studies are typically performed with the assumption that subjects used are randomly drawn from a population of subjects. The population of subjects is assumed to have a distribution of effect sizes associated with it that are Gaussian distributed. However, in practice, group studies can include "outlier" subjects whose effect sizes are completely at odds with the general population for reasons that are not of experimental interest. If ignored, these outliers can dramatically affect the inference results. To solve this problem, we propose a group inference approach which includes inference of outliers using a robust general linear model (GLM) approach. This approach models the errors as being a mixture of two Gaussian distributions, one for the normal population and one for the outliers. Crucially the robust GLM is part of a traditional hierarchical group model which uses GLMs at each level of the hierarchy. This combines the benefits of outlier inference with the benefits of using variance information from lower levels in the hierarchy. A Bayesian inference framework is used to infer on the robust GLM, while using the lower level variance information. The performance of the method is demonstrated on simulated and fMRI data and is compared with iterative reweighted least squares and permutation testing.

Original publication

DOI

10.1016/j.neuroimage.2008.02.042

Type

Journal article

Journal

Neuroimage

Publication Date

06/2008

Volume

41

Pages

286 - 301

Keywords

Algorithms, Brain, Humans, Magnetic Resonance Imaging, Models, Statistical, Normal Distribution