Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Deep brain stimulation (DBS) is an expanding field in neurosurgery and has already provided important insights into the fundamental mechanisms underlying brain function. One of the most exciting emerging applications of DBS is modulation of blood pressure, respiration and micturition through its effects on the autonomic nervous system. DBS stimulation at various sites in the central autonomic network produces rapid changes in the functioning of specific organs and physiological systems that are distinct from its therapeutic effects on central nervous motor and sensory systems. For example, DBS modulates several parameters of cardiovascular function, including heart rate, blood pressure, heart rate variability, baroreceptor sensitivity and blood pressure variability. The beneficial effects of DBS also extend to improvements in lung function. This article includes an overview of the anatomy of the central autonomic network, which consists of autonomic nervous system components in the cortex, diencephalon and brainstem that project to the spinal cord or cranial nerves. The effects of DBS on physiological functioning (particularly of the cardiovascular and respiratory systems) are discussed, and the potential for these findings to be translated into therapies for patients with autonomic diseases is examined.

Original publication

DOI

10.1038/nrneurol.2012.100

Type

Journal article

Journal

Nat Rev Neurol

Publication Date

12/06/2012

Volume

8

Pages

391 - 400

Keywords

Animals, Autonomic Nervous System, Autonomic Nervous System Diseases, Brain Diseases, Cardiovascular Physiological Phenomena, Deep Brain Stimulation, Humans, Neural Pathways, Respiration