Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

© 2014. American Geophysical Union. All rights reserved. Nitrogen dioxide (NO2) columns observed from space have been useful in detecting the increase of nitrogen oxides (NOx) emissions in East Asia, particularly China, coinciding with rapid economic growth during the past several decades. NO2 columns retrieved above a particular location reflect a combination of local NOx emissions and transported NOx from upwind sources. In this study, we demonstrate the transport of NOx emitted in East Asia using satellite and surface in situ measurements and Lagrangian particle dispersion model simulations. Enhanced satellite NO2 columns in the Yellow Sea (between China and South Korea) and the East Sea (between South Korea and Japan), and different seasonal variations of NO2 in China, North and South Korea, and Japan, suggest the importance of NOx transport in understanding the local NOx budget. Lagrangian transport model simulations with tracers of different chemical lifetimes identify source-receptor relationships that explain high NO2 over the oceans and springtime peaks in Korea and Japan, with China being the most likely source region. Our results have important implications for studies using satellite NO2 retrievals to derive NOx emissions at local scales in regions adjacent to large sources, such as in East Asia, Europe, and the Eastern U.S.

Original publication

DOI

10.1002/2013JD021185

Type

Journal article

Journal

Journal of Geophysical Research

Publication Date

16/03/2014

Volume

119

Pages

2574 - 2596