Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

This paper presents a classification fusion for Alzheimer's Disease (AD) and Mild Cognitive Impairment (MCI) classification based on dataset acquired basically from an automated structural MRI image processing pipeline. The dataset includes eighty-one regional cortical volume and cortical thickness features produced by the automated pipeline, along with two demographic measurements and three manual volume measurements of the hippocampus. This high-dimensional pattern classification problem is tested in a large database that contains clinical tests from six medical centers in Europe. The assessment of the results has shown that with a careful selection of combined classifiers, subject classification in three classes (Normal Controls, patients with MCI or with AD) is fairly accurate and can be used as an assistive tool to clinical examinations. © Springer-Verlag Berlin Heidelberg 2013.

Original publication




Journal article


Communications in Computer and Information Science

Publication Date





193 - 202