Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

In this article, we propose a method to track trial-specific neural dynamics of stimulus processing and decision making with high temporal precision. By applying this novel method to a perceptual template-matching task, we tracked representational brain states associated with the cascade of neural processing, from early sensory areas to higher order areas that are involved in integration and decision making. We address a major limitation of the traditional decoding approach: that it relies on consistent timing of these processes over trials. Using a TUDA approach, we found that the timing of the cognitive processes involved in perceptual judgments can vary considerably over trials. This revealed that the sequence of processing states was consistent for all subjects and trials, even when the timing of these states varied. Furthermore, we found that the specific timing of states on each trial was related to the quality of performance over trials. Altogether, this work not only highlights the serious pitfalls and misleading interpretations that result from assuming stimulus processing to be synchronous across trials but can also open important avenues to investigate learning and quantify plasticity.

Original publication




Journal article


Cereb Cortex

Publication Date





863 - 874