Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

The prefrontal cortex (PFC) dopamine system, which is critical for modulating PFC function, undergoes remodeling until at least young adulthood in primates. Catechol-o-methyltransferase (COMT) alters extracellular dopamine levels in PFC, and its gene contains a functional polymorphism (Val(158)Met) that has been associated with variation in PFC function. We examined COMT enzyme activity and protein immunoreactivity in the PFC during human postnatal development. Protein was extracted from PFC of normal individuals from 6 age groups: neonates (1-4 months), infants (5-11 months), teens (14-18 years), young adults (20-24 years), adults (31-43 years), and aged individuals (68-86 years; n = 5-8 per group). There was a significant 2-fold increase in COMT enzyme activity from neonate to adulthood, paralleled by increases in COMT protein immunoreactivity. Furthermore, COMT protein immunoreactivity was related to Val(158)Met genotype, as has been previously demonstrated. The significant increase in COMT activity from neonate to adulthood complements previous findings of protracted postnatal changes in the PFC dopamine system and may reflect an increasing importance of COMT for PFC dopamine regulation during maturation.

Original publication




Journal article


Cereb Cortex

Publication Date





1206 - 1212


Adolescent, Adult, Aged, Aging, Catechol O-Methyltransferase, Dopamine, Enzyme Activation, Female, Gene Expression Regulation, Developmental, Gene Expression Regulation, Enzymologic, Humans, Infant, Infant, Newborn, Male, Prefrontal Cortex